3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор оборотов двигателя сверлильного станка

Радио-как хобби

Сверлильный станок для печатных плат.

28.03.2017 admin Комментарии 68 комментариев

Делаем сверлильный станок для печатных плат своими руками.

Надоело , в общем то, сверлить платы ручной сверлилкой поэтому решено было изготовить небольшой сверлильный станок исключительно для печатных плат. Конструкций в интернете полным полно, на любой вкус. Посмотрев несколько описаний подобных сверлилок, пришел к решению повторить сверлильный станок на основе элементов от ненужного, старого CD ROM’a. Разумеется, для изготовления этого сверлильного станочка придется использовать материалы те, что находятся под рукой.

От старого CD ROM’a для изготовления сверлильного станочка берем только стальную рамку со смонтированными на ней двумя направляющими и каретку, которая передвигается по направляющим. На фото ниже все это хорошо видно.

На подвижной каретке будет укреплен электродвигатель сверлилки. Для крепления электродвигателя к каретке был изготовлен Г-образный кронштейн из полоски стали толщиной 2 мм.

В кронштейне сверлим отверствия для вала двигателя и винтов его крепления.

В первом варианте для сверлильного станочка был выбран электродвигатель типа ДП25-1,6-3-27 с напряжением питания 27 В и мощностью 1,6 Вт. Вот он на фото:

Как показала практика, этот двигатель слабоват для выполнения сверлильных работ. Мощности его ( 1,6 Вт) недостаточно- при малейшей нагрузке двигатель просто останавливается.

Вот так выглядел первый вариант сверлилки с двигателем ДП25-1,6-3-27 на стадии изготовления:

Поэтому пришлось искать другой электродвигатель-помощнее. А изготовление сверлилки застопорилось…

Продолжение процесса изготовления сверлильного станочка.

Через некоторое время попал в руки электродвигатель от разобранного неисправного струйного принтера Canon:

На двигателе нет маркировки, поэтому его мощность неизвестна. На вал двигателя насажена стальная шестерня. Вал этого двигателя имеет диаметр 2,3 мм. После снятия шестерни, на вал двигателя был надет цанговый патрончик и сделано несколько пробных сверлений сверлом диаметром 1 мм. Результат был обнадеживающим- «принтерный» двигатель был явно мощнее двигателя ДП25-1,6-3-27 и свободно сверлил текстолит толщиной 3мм при напряжении питания 12 В.

Поэтому изготовление сверлильного станочка было продолжено…

Крепим электродвигатель с помощью Г-образного кронштейна к подвижной каретке:

Основание сверлильного станочка изготовлено из стеклотекстолита толщиной 10мм.

На фото – заготовки для основания станочка:

Для того, чтобы сверлильный станочек не ёрзал по столу во время сверления, на нижней стороне установлены резиновые ножки:

Конструкция сверлильного станочка –консольного типа, то есть несущая рамка с двигателем закреплена на двух консольных кронштейнах, на некотором расстоянии от основания. Это сделано для того, чтобы обеспечить сверление достаточно больших печатных плат. Конструкция ясна из эскиза:

Далее несколько изображений собранного сверлильного станочка.

Рабочая зона станочка, виден белый светодиод подсветки:

Вот так реализована подсветка рабочей зоны. На фото наблюдается избыточная яркость освещения. На самом деле-это ложное впечатление (это бликует камера)- в реальности все выглядит очень хорошо:

Консольная конструкция позволяет сверлить платы шириной не менее 130 мм и неограниченной ( в разумных пределах) длиной.

Замер размеров рабочей зоны:

На фото видно, что расстояние от упора в основание сверлильного станочка до оси сверла составляет 68мм, что и обеспечивает ширину обрабатываемых печатных плат не менее 130мм.

Для подачи сверла вниз при сверлении имеется нажимной рычаг-виден на фото:

Для удержания сверла над печатной платой перед процессом сверления, и возврата его в исходное положение после сверления, служит возвратная пружина, которая надета на одну из направляющих:

Система автоматической регулировки оборотов двигателя в зависимости от нагрузки.

Для удобства пользования сверлильным станочком было собрано и испытано два варианта регуляторов частоты вращения двигателя. В первоначальном варианте сверлилки с электродвигателем ДП25-1,6-3-27 регулятор был собран по схеме из журнала Радио №7 за 2010 год:

Этот регулятор работать как положено не захотел, поэтому был безжалостно выброшен в мусор.

Для второго варианта сверлильного станка, на основе электродвигателя от струйного принтера Canon, на сайте котов-радиолюбителей была найдена еще одна схема регулятора частоты вращения вала электродвигателя:

Данный регулятор обеспечивает работу электродвигателя в двух режимах:

  1. При отсутствии нагрузки или, другими словами, когда сверло не касается печатной платы, вал электродвигателя вращается с пониженными оборотами (100-200 об/мин).
  2. При увеличении нагрузки на двигатель регулятор увеличивает обороты до максимальных, тем самым обеспечивая нормальный процесс сверления.

Регулятор частоты вращения электродвигателя собранный по этой схеме заработал сразу без настройки. В моем случае частота вращения на холостом ходу составила около 200 об/мин. В момент касания сверла печатной платы-обороты увеличиваются до максимальных. После завершения сверления, этот регулятор снижает обороты двигателя до минимальных.

Читать еще:  Самодельный диван из металла и дерева

Регулятор оборотов электродвигателя был собран на небольшой печатной платке:

Транзистор КТ815В снабжен небольшим радиатором.

Плата регулятора установлена в задней части сверлильного станочка:

Здесь резистор R3 номиналом 3,9 Ом был заменен на МЛТ-2 номиналом 5,6 Ом.

Испытания сверлильного станка прошли успешно. Система автоматической регулировки частоты вращения вала электродвигателя работает четко и безотказно.

Небольшой видеоролик о работе сверлильного станка:

Update от 01.08.2017:

На плате управления кроме собственно регулятора оборотов двигателя расположен еще и простейший стабилизатор напряжения питания светодиода подсветки рабочей зоны. Полная схема платы управления:

Автоматический сверлильный станок с подсветкой

Ранее мы рассматривали самодельные станки в этой статье.

Сегодня рассмотрим доработку к настольному сверлильному станку для печатных плат.

А именно: установка светодиодной подсветки места для сверления и добавления автоматического регулятора оборотов двигателя станка.

Светодиодная подсветка для станка

Светодиоды для подсветки удобно использовать из светодиодного светильника на пальчиковых батарейках размера ААА китайского производства.

Сверлильный станок со включенной светодиодной подсветкой

Автоматический регулятор оборотов для станка

Автоматический регулятор оборотов работает следующим образом — на холостых оборотах сверло вращается со скоростью около 15-20 оборотов/мин. (в зависимости от типа, мощности двигателя), как только сверло касается заготовки для сверления, обороты двигателя увеличиваются до максимальных. Когда отверстие просверлено и нагрузка на двигатель ослабевает, обороты вновь падают.

Принципиальная схема автоматического регулятора оборотов двигателя

Советы:

  • Транзистор КТ805 можно заменить на КТ815, КТ817, КТ819. КТ837 можно заменить на КТ814, КТ816, КТ818.
  • Вместо R1 ставим временно перемычку. Резистором R3 настраиваем холостой ход чем меньше сопротивление, тем меньше холостой ход. Впаиваем R1 и уменьшаем его пока моторчик не уменьшит обороты.
  • Подбором резистора R3 устанавливаются минимальные обороты двигателя на холостом ходу.
  • Подбором конденсатора С1 регулируется задержка включения максимальных оборотов двигателя при появлении нагрузки в двигателе.
  • Транзистор Т1 обязательно размещать на радиаторе, греется довольно сильно.
  • Резистор R4 подбирается в зависимости от используемого напряжения для питания станка по максимальному свечению светодиодов.
  • Для каждого типа двигателя нужно подбирать R1, R3 : под моторчик от принтера R1 — 7,7 Oм; R3 — 520 Oм; Питание 12,6 В. Для двигателя ДПР-42-Ф1-03 R1 — 15 Ом.
  • Если транзистор Т1 греется — необходимо поставить его на радиатор.
  • R1 — от 1 до 5Вт (в зависимости от мощности двигателя)

Схема работоспособна со многими типами двигателя. Я проверял ее на 4 различных типах, на всех работает отлично!

Я собрал схему с указанными номиналами и меня работа автоматики вполне устроила, единственное конденсатор С1 заменил на два конденсатора по 470 мкф включенных параллельно (они были меньше габаритами).

Рисунок печатной платы регулятора оборотов

Печатная плата схемы автоматического регулятора оборотов двигателя выглядит вот так:

Автор: В. Болдырев (FOTOTANK.RU)

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

Как обеспечить громкоговорящей связью, скажем, два пункта, удален­ных друг от друга на значительное расстояние? Подобная задача возникает в школе, пионерском лагере, в небольшом поселке или далеко удаленных комнатах дома. И во всех подобных случаях приходит на помощь переговорное устройство.

Суть заключается в пенопластовом поплавке, к которому прикреплен резиновый шланг (см. рис.). Другой конец шланга вставляется в штуцер трубы, ведущей к «дождику» душа.

Самым лучшим подарком считается тот подарок который сделан своими руками. В этой небольшой статейке я вам покажу как сделать подарочную коробку самим. Все мы привыкли дарить и получать подарки в квадратных, прямоугольных и даже иногда в цилиндрических коробках. Но сегодня пойдет речь немножко о другой форме коробки, на мой взгляд форма этой коробки даже более красивей чем у обычной, может это из-за того что обычные коробки уже как то пригляделись глазу и выглядят обыкновенно ,а ведь хочется чего то необыкновенного. И так давайте приступим к делу. Подробнее…

Регулятор оборотов двигателя сверлильного станка

Предлагается рассмотреть вариант изготовления электронного регулятора оборотов для двигателя постоянного тока с рабочим напряжением 24 V.

Предлагаемая конструкция регулятора оборотов двигателя, предназначена для изменения скорости вращения инструмента на сверлильном станке, изготовление которого описано в заметке «Сверлильный станок – ромбоид». Однако это устройство возможно использовать для регулирования мощности и в других конструкциях.

Необходимость в регулировке оборотов инструмента вызвана следующими причинами. Изменение обрабатываемого материала, диаметра и вида инструмента требует изменения скорости резания. Например, сверление оргстекла или некоторых термопластичных пластмасс, на режимах оптимальных для сверления металла, приведет лишь к расплавлению обрабатываемого материала в зоне резания и налипанию его на сверло. Сверление, развертывание и зенковка одного и того же отверстия, также требует разных оборотов для качественной обработки поверхности. Увеличение диаметра сверла требует пропорционального уменьшения числа оборотов. Кроме того, иногда требуется реверс направления вращения инструмента. Для элементарного выполнения этих условий предлагается изготовить электронный регулятор оборотов.

Читать еще:  Очень простая хлопушка из пластиковой бутылки

Изготовление регулятора оборотов двигателя.

1. Исходные данные.
В рассматриваемом примере, на сверлильном станке используется электродвигатель постоянного тока на 24 Вольта (0,7А).

Для работы этого электродвигателя нужен соответствующий источник питания.

Необходимое для работы двигателя напряжение и ток может обеспечить трансформатор кадровой развертки ТВК-110Л-1, взятый из старого телевизора. Он имеет небольшие габариты и массу (ШЛ 20 х 32) и с вторичной обмотки способен выдать ток 1 A с напряжением 22…24 V. При этом выпрямленное напряжение будет около 30 V, но с ростом потребляемого тока выходное напряжение будет несколько снижаться.

2. Изготовление выпрямителя.
Так как при возможном резком торможении обрабатывающего инструмента, вероятны скачки потребляемого двигателем тока до 1,5…2,0 А, для изготовляемого выпрямителя необходимо использовать диоды с запасом по предельному току. Желательно применить диоды с рабочим напряжением более 30V и предельным током более 2,0А.

В рассматриваемом варианте регулятора использованы, оптимальные из имеющихся под рукой, диоды КД202Д (200V — 5,0А).
Из выбранных диодов соберем мостовой выпрямитель и подключим его к вторичной обмотке трансформатора. Запитаем трансформатор от сети и проверим выходное напряжение.

3. Изготовление корпуса для устройства.
Пришло время для размещения электрической части регулятора оборотов. Возможны следующие варианты исполнения. В отдельном независимом от станка корпусе, в установленном постоянно на станке корпусе, а также встроенном в конструкцию станка (например, в столе станка).

Так как предлагаемая конструкция является регулятором мощности для различных устройств, то с учетом перспектив его возможного дальнейшего применения целесообразно изготовить это устройство в отдельном мобильном корпусе. Изготовление или приобретение подходящего корпуса будет зависеть от Ваших пожеланий и возможностей. Как вариант, в рассматриваемой конструкции использован пластмассовый флакон от химикатов с габаритными размерами 90 х 70 х 90 мм.

У емкости частично срезана верхняя часть. Образовавшееся окно закрывается декоративной панелью изготовленной из металлического листа толщиной 0,4 мм. Ребра, образованные после гибки с трех сторон полочек на заготовке, придают панели достаточную для работы жесткость. При установке в конструкцию, панель также дает корпусу дополнительную прочность. На панели устанавливается розетка для выходного напряжения, регулятор мощности, плата с электронной схемой (снизу).
По размерам окна в корпусе, из универсальной монтажной платы, вырезается рабочая плата для размещения электронной схемы регулятора.

Схема регулятора выполнена на базе DA1 — импортном интегральном таймере NE555 (отечественный аналог — КР1006ВИ1). Конструкция таймера представляет собой многофункциональную интегральную микросхему (ИМС). Она часто применяется в различных устройствах (электроника, вычислительная техника, автоматика). Основным назначением этого таймера, является генерирование импульсов с большим диапазоном периода повторения (от микросекунд до нескольких часов).

Приведенная схема регулятора на таймере NE555, позволяет управлять оборотами электродвигателя с помощью широтно-импульсной модуляции (ШИМ).

В этом методе, напряжение питания на двигатель подается в виде импульсов с постоянной частотой следования, но при этом их длительностью (шириной импульса) можно управлять. При этом способе регулирования, передаваемая мощность и скорость вращения двигателя будут пропорциональны длительности импульсов (коэффициенту заполнения ШИМ сигнала — отношению длительности импульса к его периоду).
Принцип работы генератора ШИМ сигнала на таймере NE555 многократно и подробно описан в соответствующих публикациях, с чем можно ознакомиться в интернете.

Генератор регулятора работает на частоте около 500 Гц. Его частота зависит от емкости конденсатора С1. Длительность импульса будем регулировать переменным резистором R2. Сигналы с выхода генератора ШИМ сигнала, через усилитель тока на транзисторе VT1 управляют электродвигателем станка. Увеличивая ширину положительного импульса поступающего на базу транзистора VT1, мы увеличиваем мощность поступающую на двигатель постоянного тока, и наоборот. Длительность импульсов, следовательно и частоту вращения двигателя можно изменять в пределах от 0 до 95…98%.

Реверс направления вращения инструмента можно выполнить с помощью тумблера установленного на панели. Но для упрощения конструкции, эта функция выполняется поворотом вилки (сменой полюсов) в розетке на панели.

Вместо составного n-p-n транзистора КТ 829А можно применить полевой транзистор или оптрон соответствующей мощности.
Регулятор будет питаться от сети 220 В и иметь регулируемый по мощности выход на 24 В. Напряжение питания таймера NE555 должно быть в диапазоне 5…16 В, в схеме он будет работать от стабилизированного напряжения 12В. Данная схема регулятора может работать и от другого источника питания в пределах 24…30 В.

5. Комплектация устройства.
Комплектуем устройство деталями согласно приведенной схеме. Выходной транзистор VT1 и стабилизатор VR1 устанавливаем на небольшие радиаторы. В приведенной конструкции они изготовлены из алюминиевого уголка.

6. Проверка работы схемы генератора.
В интернете размещено много похожих вариантов схемы генератора на таймере NE555, но номиналы деталей в разных схемах отличаются в десятки и сотни раз. Поэтому, для упрощения изготовления и отладки работающей схемы, желательно предварительно собрать ее на универсальной монтажной плате.

Читать еще:  Деревянные башмаки-ролики из паллетов

Собираем схему генератора. К выходу таймера (выв.3) подключаем базу n-p-n транзистора КТ315. В цепь его коллектора включаем индикаторный светодиод через ограничительный резистор 1кОм. Эмиттер подключаем на минус схемы. Запитываем схему генератора от стабилизированного источника питания 12В. Подбирая номиналы деталей, контролируем правильность работы генератора по свечению светодиода.

Контрольный светодиод можно установить и непосредственно к выходу таймера (выв.3), но следует учитывать, что таймер NE555 имеет выходной ток до 200 мА. Близкий отечественный аналог КР1006ВИ1 допускает выходной ток до 100 мА.

8. Сборка регулятора оборотов двигателя.
Собираем все узлы регулятора оборотов. Закрепляем плату на панели устройства, используя прокладку из тонкого текстолита для изоляции контактов платы от металлической панели. Выход регулятора присоединяем к розетке расположенной на панели. Также к ее клеммам, в обратном направлении, припаиваем диод VD3. Он будет гасить импульсы самоиндукции обмотки электродвигателя. Этот диод должен выдерживать рабочее напряжение и ток, не менее двух раз превышающие рабочие характеристики двигателя.

Роль индикатора работы регулятора будет выполнять один элемент светодиодной ленты LED1, на напряжение 12В. Разместим (приклеим) его на плечо подвески двигателя, над сверлильным патроном, для одновременной с индикацией подсветки зоны обработки.

9. Доработка конструкции сверлильного станка.
Работа на изготовленном станке показала необходимость в некоторых доработках его конструкции.

Под винт фиксации по высоте установлена дополнительная пластина, позволяющая распределить давление зажима на большую площадь, исключить заклинивания и облегчить скольжение основания подвески по стойке станка.

По предложению комментатора о контроле оптимального положения инструмента относительно обрабатываемой детали, изготовлен и установлен регулируемый упор. Он устанавливается наверху основания подвески и служит упором для верхнего рычага подвески. Упор настраивается так, чтобы сверлильный патрон и рычаги подвески не могли опуститься ниже 2-х мм от нулевой линии. В положении на упоре, сверло устанавливается в патроне, до касания столика станка. Так оно автоматически будет работать в оптимальной зоне 4мм, с минимальным боковым смещением 0,01мм.

Регулятор оборотов коллекторного двигателя на TDA1085

7 лет на сайте
пользователь #735853

Новая плата заводского изготовления с оригинальными компонентами!
Гарантийное и послегарантийное обслуживание.

Регулирует обороты коллекторного двигателя (двигатель с щетками) без потери мощности (с поддержанием мощности) вне зависимости от нагрузки. Данный модуль позволяет управлять оборотами от 0 до 20000 об/мин. (или максимально заявленных производителем), при этом сохраняя момент силы на валу электродвигателя. На плате предусмотрен предохранитель по питанию и все необходимые клеммы для подключения сети 220В, мотора и таходатчика. Регулятор нашел широкое применение для двигателей от стиральных машин автомат.

Модуль представляет собой небольшую плату со всеми необходимыми элементами для обвязки и построенную на микросхеме TDA1085c. Необходимым условием для подключения является наличие таходатчика (тахогенератор), который позволяет обеспечить обратную связь электродвигателя с микросхемой. При нагрузки двигателя, частота оборотов начинает падать, что фиксирует таходатчик, который дает команду микросхеме увеличить напряжение и наоборот, когда нагрузка ослабевает — напряжение на двигатель падает. Таким образом данная конструкция позволяет поддерживать постоянную мощность коллекторного двигателя при изменении частоты вращения ротора.

Данная плата хорошо подходит к электродвигателю от стиральной машины автомат. В сочетании двух устройств, легко можно сделать своими руками:
— Токарный станок по дереву;
— Фрезерный станок;
— Медогонку;
— Газонокосилку;
— Гончарный круг;
— Дровокол;
— Наждак;
— Сверлильный станок;
— Корморезка;

Преимущества:
1. Трансформаторная схема питания:
— Сеть гальванически развязвна.
— Высокая надежность (не боится скачков напряжения).
— Пажаробезопасен.
2. Перед продажей все платы настраиваются и проверяются в работе.
3. Компактный размер платы позволит установить ее в любой корпус.
4. Качественный монтаж радиоэлементов.
5. Плата заводского изготовления с маской обеспечит защиту от пыли и коррозии.

Технические характеристики:
1. Напряжение питания — 220В/50 Гц;
2. Мощность подключаемого двигателя — до 1500 Вт (возможно увеличить мощность до 3000Вт);
3. Регулировка мощности — от 0 Гц до максимально возможных (заявленных производителем двигателя);
4. Размер — 93х68х30 мм
5. Вес — 0,16 кг

Комплект поставки:
1. Плата управления оборотов двигателя — 1шт;
2. Потенциометр для регулировки оборотов двигателя (с ручкой) — 1шт;
3. Выключатель — 1шт.
4. Упаковка и инструкция — 1шт.

Дополнительная комплектация:
1. Набор проводов с клеммами для подключения платы к двигателю — 5 шт +5 рублей
2. Переключатель реверса с правильной разводкой проводов на клеммах — 1 комплект +9 рублей
3. Установка регулятора в корпус со всеми переключателями (выключатель + реверс) и проводами на клеммах 0,5м + сетевой шнур 1м с вилкой. +36 рублей

Купить в Минске (доставка курьером), или почтой в любую точку по Беларуси (наложенный платеж). Пересылку оплачивает покупатель при получении согласно тарифам белпочты.
Самовывоз (г. Минск, ул. Брестская, 34) бесплатно!

Наличный или безналичный расчет. Гарантия производителя 1 год + сервисное обслуживание.

Бесплатная доставка при покупке от 2шт! Скидка при оптовой покупке!

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector