0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Магнитный нагреватель

Магнитный нагреватель воды своими руками: список материалов и подробная инструкция по сборке

Дата публикации: 23 августа 2019

Магнитный нагреватель воды — это безопасный и экологичный прибор, который работает за счет вихревых токов Фуко. Смастерить агрегат сможет каждый.

Что это такое

Магнитный нагреватель — это простое и экологичное приспособление, которое с помощью вихревых токов Фуко, создаваемых электромагнитным полем, прогревает теплоноситель. Такой прибор применяют для нагрева воды, приготовления еды или даже отопления жилых помещений.

Можно сконструировать различные модели магнитных нагревателей на постоянных магнитах, но для домашнего использования лучше всего подойдет вихревой индукционный прибор (ВИН).

Принцип работы нагревающего агрегата:

  1. Через преобразователь ток высокой частоты поступает в цилиндр, изготовленный из медной проволоки, которая выполняет роль индуктора.
  2. Вокруг проволоки образуется электромагнитное поле, создающие вихревые токи.
  3. Внутри индуктора располагается теплообменник, который за счет поступающих токов Фуко накаляется.
  4. Вслед за теплообменником накаляется и теплоноситель.

Конструкции нагревателей могут незначительно разниться в зависимости от целей использования, но общий принцип работы схож. Владельцев частных домов также могут заинтересовать интересные способы использования солнечной энергии для подогрева воды.

Почему выгодно смастерить прибор своими руками

Сразу можно выделить главные преимущества нагревателей, действующих за счет электромагнитных сил:

  • высокий коэффициент полезного действия. КПД прибора может достигать 99%, то есть электричество без потерь преобразуется в тепловую энергию;
  • долгий срок эксплуатации. За счет простоты конструкции магнитный агрегат может без поломок работать десятки лет;
  • безопасность. Газовое оборудование гораздо чаще провоцирует возникновение аварийных ситуаций, пожаров и т.д.;
  • экологичность. Людей, которые заботятся об окружающей среде и заинтересованы в альтернативных источниках энергии, порадует отсутствие опасных выбросов и продуктов горения. Чтобы использовать агрегат, не нужно устанавливать вытяжки или дымоходы;
  • простота использования. Приспособление не требует особого технического обслуживания. Поле, появляющееся между электрически заряженными частицами, не только дает эффект нагрева, но также создает вибрации, предотвращающие образование накипи на теплообменнике;
  • отсутствие шума. Агрегат работает очень тихо, поэтому не доставит дискомфорта;
  • небольшой размер. Компактные габариты позволяют использовать приспособление в любом типе помещений.

Основным же минусом считается высокая цена. Однако выход есть: смастерить магнитный нагреватель воды своими руками вовсе не сложно.

Необходимые материалы

Чтобы изготовить конструкцию на дому, следует заранее подготовить:

  • кусок пластиковой трубы;
  • циркулярный насос для воды;
  • тиристоры для создания инвертора — приспособления, преобразующего постоянный ток в переменный;
  • 2 вида проволоки: из меди и любого нержавеющего металла;
  • плоскогубцы и кусачки;
  • переходники и шаровой водопроводный кран.

Такой набор поможет смастерить несложный магнитно-вихревой нагреватель для бытовых нужд.

Пошаговая инструкция

Процесс сборки можно разбить на несколько основных этапов, каждый из которых посвящен подготовке определенного элемента: нагревательной части, индуктора и инвертора. Завершает процесс сборки подключение.

Далее остановимся подробно на каждом этапе:

  1. Отверстие трубы с одной стороны зафиксируйте с помощью металлической сетки.
  2. С помощью кусачек порежьте проволоку из нержавеющего металла на множество кусочков и заполните ими трубу. Важно: внутри не должно остаться пустот.
  3. Закройте второе отверстие трубы сеткой так же, как и первое.
  4. Трубу обмотайте медной проволокой. Рекомендованное количество витков: от 90 до 120. Меньше — бессмысленно.
  5. Согласно электрической схеме, представленной ниже, конструируется тиристорный инвертор, который преобразует электроэнергию в ток с высокой частотой.

Завершающий этап — подключение магнитного нагревателя воды на вихревых токах к системе отопления с помощью переходников и шаровых водопроводных кранов.

Все, собственноручно собранный прибор можно сразу использовать на дому. Результаты теста агрегата, собранного по такой схеме, показали: если его использовать как проточный нагреватель, то на первых этапах при мощности в 1500 Вт вода разогреется с 15 до 27 °C за 15-20 секунд. Интерпретируя результаты, нужно учитывать, что температура зависит от напора струи из-под крана. В данном тесте поток был слабый.

Читать еще:  Магнитный жук - помощник мастера

Собрать магнитный нагреватель собственноручно — это правильное решение для тех, кто желает сэкономить на нагреве воды. Благодаря высокому КПД прибор составит достойную конкуренцию водяным ТЭНам.

Вам нужно войти, чтобы оставить комментарий.

Магнитный нагреватель

Статус проекта: завершен

Данный проект уже можно отнести к истории развития нашей Лаборатории. Примечателен тем, что именно с него мы начали практическую работу в области устройств альтернативной энергетики. Уже при создании первого прототипа стало ясно, что никакого аномального выделения тепла в устройстве не наблюдается, но мы завершили работу над агрегатом из принципиальных соображений.

В данной статье речь идет о прототипе устройства, вырабатывающего тепло за счет токов Фуко, порождаемых переменным магнитным полем, создаваемым вращающимся диском с магнитами. Если в это переменное поле поместить алюминий или медь, они начинают весьма интенсивно нагреваться. Вот, например ролик с громким названием «FREE HEATING . »

Люди, насмотревшись подобных роликов, начинают изготавливать конструкции, кто во что горазд. Чаще всего довести конструкцию до рабочего состояния не получается. Оценка эффективности производится «на глазок», естественно, не без участия «плацебо».

Итак, миф№1 — нагрев не бесплатный, нагрев возникает за счет электромагнитной индукции, порождаемой вихревыми токами Фуко в металле. Ротор с магнитами при этом испытывает торможение, пропорциональное нагреву.

ВНИМАНИЕ. На данной благодатной теме (народ жаждет «халявного» тепла) наживаются мошенники, например, этот:

Проблема состоит, как всегда, в качественном исполнении и в правильном замере эффективности.

Для объективного замера тепловой мощности, вырабатываемым устройством, мы собрали теплостенд

Конструктивно проще всего вращать диск с магнитами, а нагревать трубку или несколько трубок с циркулирующим внутри теплососителем — водой. Встречаются иные конструктивные решения, например:

— вращается цилиндрический ротор с продольно расположенными магнитами, а трубка навита в форме спирали вокруг этого цилиндра, как внешняя обойма;

— вращается алюминиевый цилиндр, а вокруг расположены неподвижные продольно расположенные магниты (бруски) — воздушный отопитель.

Сути это не меняет, а проблем при реализации возникает масса, поэтому мы решили остановиться на «классической компоновке».

Вот модель нашего первого прототипа:

Позже мы решили заменить мотор на более подходящий, что привело к изменению всей конструкции. Диаметр диска — 200 мм, толщина — 25 мм, количество магнитов — 36 шт., силой по 6,9 кг. Двигатель асинхронный, однофазный, 2,2 кВт.

Идет дальнейшая сборка прототипа

Мы потратили кучу времени на эксперименты с разными теплообменниками, пробовали гнуть медные трубки с помощью специально выточенной оправки, но больших успехов не добились. Кроме того, если нагревать одну кольцевую медную трубку, может случиться так, что она не будет успевать передать тепловую энергию проходящей воде и начнет перегреваться, нагревая больше атмосферу, чем теплоноситель. Известно, что кпд теплообмениика находится в зависимости от площади его рабочей поверхности.

В итоге пришли к конструкции теплообменника в виде пакета из 4-х алюминиевых трубок с хорошей геометрией, максимальной «рабочей плоскостью» и большой площадью внутренних поверхностей. Такая схема позволит эффективно передавать тепло от нагреваемого металла воде, прокачиваемой через теплообменник насосом.

Общий вид установки вместе с измерительным стендом см. фото в начале статьи.

Теперь самое интересное и ожидаемое — цифры.

Выходная тепловая мощность при потреблении 3 кВт не превысила 2 кВт, кпд системы (то что она «закрытая», уже не вызывает никаких сомнений) можете легко посчитать самостоятельно.

А мы по отработанной схеме продолжаем эксперименты с кавитационным теплогенератором, а диковинный агрегат займет свое достойное место в «музее поля Чудес» в качестве наглядного доказательства того, что интернет переполнен огромным количеством ложной , непроверенной информации, и не все то золото, что «free heating».

Актуальное видео (05.03.14):

Индукционный нагреватель своими руками.

Индукционный нагреватель бесконтактным способом разогревает различные металлические детали с помощью высокочастотного тока. В металле, внесённом в катушку, возникают вихревые токи, которые и производят нагрев. Стержни из алюминия и меди нагреваться не будут. Палец тоже ничего не почувствует. А вот кольца из алюминия, меди, золота и других металлов нагреются, особенно сильно, если их размещать в соответствии с расположением витков индукционной катушки.

Один из самых простых индукционных нагревателей я собрал по такой схеме.

Читать еще:  Малые помощники - магнит на сверлильном станке

Для сборки использовал «крокодилы», пайку и две клеммы на болтах.

4 резистора, 2 стабилитрона на 12 В (слышал, что они не нужны, если не питать схему напряжением более 12 В, но на всякий случай оставил), 2 ультрабыстрых диода (обычные не подойдут),

В нагревателе работают 2 полевых транзистора 2SK1938 на радиаторе (с IRFZ44N должен работать лучше, но у меня их нет, чтобы проверить).

Батарея из двух конденсаторов общей ёмкостью 0,449 мкФ. Один имеет измеренную ёмкость 224 нФ, 400 В. Рекомендуемая общая ёмкость 0,66 мкФ — 4,7 мкФ и напряжение 630 В переменного (1200 В постоянного) — 1600 В. Добавление 100 нФ 1000 В увеличило температуру нагрева.

2 дросселя с количеством витков — 30. Диаметр 3 см, толщина 1,7 см.

Катушка, в которой происходит нагрев, сделана из алюминиевого провода диаметром 1 мм. Имеет 16 витков. Диаметр 2,5 см, длина 3 см.

Питание осуществлялось от компьютерного блока питания. Напряжение 12 Вольт.

Железный гвоздь нагрелся до 415°. Термопара до 130°.

Потребляемый ток на холостом ходу (когда ничего не внесено в катушку) 0.8 А. Может повышаться до 5,5 А в зависимости от толщины детали и её расположения.

Частота на холостом ходу 118 кГц. При нагреве проседает до 100 кГц.

Раздвигание витков, уменьшение количества витков и уменьшение их диаметра повышает потребляемый ток и увеличивает частоту. Увеличение ёмкости конденсатора повышает ток и снижает частоту.

Данная схема может применяться не только для индукционного нагрева, но и для получения высокого напряжения высокой частоты. Для этого нужно подключить вместо катушки строчный трансформатор. На выходе вот такая дуга:

При подключённом строчном трансформаторе ток потребления 0,22 А, при возникновении дуги поднимается до 4,6 А. Соответственно, так изменяется напряжение и частота на входе строчника (без дуги и во время дуги): 15,9 В до 0,6 В, 28 кГц до 55 кГц.

Если ничего не подключать, то потребляемый ток 1,3 А и слышен свист. В этом случае переменное напряжение на конденсаторах 21,6 В.

Позже на GitHub нашёл сильно упрощённую схему . Оказалось, что она работает не хуже. Один дроссель с материнки 18 мм, 10 витков. Потом по ошибке включил без дросселя и не заметил разницы. Так что, можно использовать и без него.

Попробовал новый индуктор, алюминиевого провода 2,5 мм, 5 витков. Холостой ток 1,8 А, 338 кГц.

А ещё можно вскипятить воду в стеклянной ёмкости, если положить в неё железный гвоздь или обернуть изнутри фольгой. Также вода будет нагреваться в металлических ёмкостях.

Индукционный нагреватель своими руками

Индукционный нагреватель незаменимая вещь для кузнецов, токарей, слесарей и домашних мастеров. С его помощью всегда легко и быстро можно нагреть и даже расплавить металл, вам не нужны дорогие теплоносители, такие, как уголь и газ, достаточно подключить к прибору электричество. Происходит бесконтактный нагрев металла токами высокой частоты, по научному волнами радиочастотного диапазона. Прибор широко применяют для термообработки, закалки и гибки деталей, бесконтактной плавки, пайки и сварки, металлов. В ювелирном деле для термической обработки мелких деталей. В медицине для дезинфекции медицинского инструмента. В автосервисе слесаря нагревают заржавевшие гайки. Так же индуктор устанавливают в индукционных котлах, применяемых для отапливания жилых помещений.

На этом рисунке изображена рабочая схема индукционного нагревателя, который вы легко можете сделать своими руками.

Схема индукционного нагревателя

Устройство состоит из задающего генератора высокой частоты собранного на двух мощных полевых транзисторах. Рабочее напряжение генератора зависит от мощности установленных полевых транзисторов. С транзисторами IRFP250 устройство можно питать напряжением от 12 до 30 вольт. А если установить транзисторы IRFP260, тогда напряжение питания можно поднять от 12 до 60 вольт.

Мощность индуктора заметно возрастет, температура нагрева металла поднимется более 1000 градусов, что позволит плавить металлы. В процессе работы транзисторы будут очень сильно нагреваться, поэтому их надо установить на большие радиаторы и поставить мощный вентилятор. На холостом ходу индуктор потребляет не менее 10А, а в рабочем состоянии не менее 15А, соответственно требуется очень мощный блок питания минимум на 20А.

Читать еще:  Магнитола из встраиваемой панели M011

На этом рисунке изображена печатная плата индукционного нагревателя.

Так же вам понадобятся резисторы R1, R2 на 10К мощностью 0.25 Ватт. Резисторы R3, R4 с сопротивлением 470 Ом не менее 2 Ватт. Диоды D1, D2 ультрабыстрые UF4007 или другие аналогичные на максимальный ток до 1А. Стабилитроны VD1, VD2 мощностью не менее 5 Ватт с напряжением стабилизации 12В например 1N5349 и другие. Дроссели L1, L2 размером 27х14х11 мм желтого цвета с белой полосой я вытащил из компьютерных блоков питания. На каждый дроссель надо намотать 25 витков медного провода диаметром 1 мм желательно в лаковой изоляции, если не найдете, подойдет одножильный провод в полихлорвиниловой изоляции на скорость сильно не влияет.

Конденсаторы С1-С16 металлоплёночные 0.33 мкФ 630В, соединяются параллельно рядами 4х4, в блоке всего шестнадцать штук. С меньшим рабочим напряжением лучше не ставить, будут сильно греться. Между конденсаторами оставляйте небольшое расстояние для хорошего охлаждения потоком воздуха.

Дроссели решил приклеить силиконовым герметиком, чтобы не болтались.

Важную деталь нагревателя, индуктор я сделал из медной трубки диаметром 6 мм длинною 1 метр. Купить такую можно в любом автомагазине типа «Газовщик» и там где торгуют газо-балонным оборудованием для автомобилей. Медную трубку наматываем на кусок полипропиленовой трубы внешним диаметром 40 мм, такая труба используется в пластиковом отоплении. Делаем пять витков, расстояние между верхним краем первого витка и нижним краем пятого витка должно быть 40 мм. Концы трубы изгибаем, как на рисунке и прикрепляем к радиаторам с помощью двух клемных колодок для провода сечением 16 мм².

В процессе работы индуктор будет сильно нагреваться от раскаленной детали, что может привести к повреждению медной трубки, поэтому надо сделать охлаждение. На концы медной трубки я одел силиконовые трубки и подключил насос омывателя лобового стекла автомобиля. Насос от ВАЗ 2114 и силиконовые трубки купил в автомагазине. Получилась нормальная водяная система охлаждения.

Чтобы охлаждать радиаторы и блок конденсаторов поставил мощный вентилятор от процессора. Для питания от 12 вольт такого охлаждения вполне достаточно. Если захотите поднять напряжение от 12 до 60 вольт, чтобы получить максимальную мощность от индукционного нагревателя, поставьте более мощные радиаторы и более производительный вентилятор, например от отопителя салона ВАЗ 2107. Желательно сделать металлическую шторку оберегающую нагреваемую деталь и медный индуктор от потока нагнетаемого вентилятором холодного воздуха.

Поскольку индукционный нагреватель потребляет большой ток около 20А, все дорожки на печатной плате следует усилить медной проволокой, напаянной сверху.

А теперь самое интересное… Испытания индукционного нагревателя я проводил от двенадцати вольтового автомобильного аккумулятора. Другого источника питания способного выдавать большие токи у меня просто нет. Лезвие от канцелярского ножа нагрелось до красна за 10 секунд. А это хороший результат, если учесть, что индуктор запитан всего от двенадцати вольт!

Друзья! Если хотите собрать индукционный нагреватель своими руками. Мой вам совет… Сразу ставьте полевые транзисторы IRFP260, большие радиаторы и мощный вентилятор от отопителя салона ВАЗ 2107, для питания индуктора обязательно используйте мощный источник питания лучше всего начиная от 24В до 60В с силой тока минимум на 20А.

Радиодетали для сборки индукционного нагревателя

  • Транзисторы Т1, Т2 IRFP250 лучше IRFP260 2 шт.
  • Резисторы R1, R2 10K 0.25W 2 шт. R3, R4 470R 2W 2 шт.
  • Диоды D1, D2 ультрабыстрые UF4007 2 шт. или аналогичные
  • Стабилитроны VD1, VD2 на 12V 1W 1N5349 или аналогичные 2 шт.
  • Конденсаторы C1-C16 0.33mf 630V 16 шт.
  • Дроссели от компьютерного БП желтые с белой полосой, размер 27х14х11 мм 2 шт.
  • Колодка клемная для провода сечением 16 мм² 2 шт.
  • Провод медный в лаковой изоляции d=1 мм длина 2 метра
  • Трубка медная d=6 мм, длина 1 метр
  • Радиатор чем больше, тем лучше 2 шт.
  • Насос омывателя лобового стекла от ВАЗ 2114 1 шт.
  • Трубка силиконовая 2 метра
  • Вентилятор чем мощнее, тем лучше. Рекомендую от отопителя салона ВАЗ 2107 1 шт.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать индукционный нагреватель своими руками

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector