9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Авиамодель — простой тандем 250 — 3D

Быстрое изготовление авиамодели своими руками

Авиамоделизм это интересное хобби, он интересен не только детям но взрослым.
Единственным минусом является стоимость авиамоделей.
Не электроники, она практически не страдает, а самой авиамодели, которая в неопытных руках редко летает больше 3-4 раз.

Для того, что бы набраться опыта — надо сменить 3-4 авиамодели, а это не всегда доступно по цене.
Предлагаю изготовить авиамодель своими руками для полетов на свежем воздухе.

Для упрощения и легкости изготовления лучше всего взять за основу технологию изготовления Плосколетов.

Плосколет — это авиамодель из потолочной плитки (да — той самой что продается в большом количестве на строительных рынках), выполненная по контурной технологии — от настоящего самолета в авиамодели воспроизводиться только контур.

Для начала необходимо скачать чертеж авиамодели — например скачать чертежи авиамодели P40-Warhawk или Mustang P-51D .
Теперь распечатываем чертежи, наклеиваем на потолочку и вырезаем.

Получаются такие вот заготовки

Фюзеляж разрезаем по длине и вклеиваем деревянную рейку для упрочнения фюзеляжа.
Лучше делать из 2-х слоев потолочки, склеивать клеем для потолочной плитки Титан.

В передней части фюзеляжа устанавливаем электродвигатель
Это может быть коллекторный

или современный бесколлекторный авиамодельный двигатель

Для управления необходимо сделать рулевые плоскости, в нашем случае это будут элероны и руль высоты.
Отрезаем их там где они обозначены на чертеже и соединяем на скотч — как показано на рисунке ниже

На плоскости устанавливаем кабанчики, в них будут крепиться тяги

Прочитать как сделать самодельные кабанчики можно в статье Самодельные кабанчики для авиамодели.

Одну сервомашинку крепим на крыло и соединяем тягами из упругой проволоки с кабанчиками элеронов.

Другую ставим на половине длинны фюзеляжа и соединяем с рулем высоты.

Можно просто прорезать отверстия под сервомашинки и зафиксировать их клеевым пистолетом или вклеить на Титан — в последнем случае желательно обернуть сервомашинку предварительно бумажным скотчем.

На фюзеляже закрепляем приемник, регулятор оборотов двигателя и аккумулятор.

Закрепить надо так — что бы центр тяжести авиамодели приходился на 23-25% ширины крыла. Тогда авиамодель будет хорошо летать.

Остается только поставить винт и отправляться в полет! По материалам сайта Радиоуправляемые Авиамодели

Еще про радиоуправляемые модели:

Самый дешевый квадрокоптер

Как сделать квадрокоптер своими руками

Простая радиоуправляемая яхта

Катер для завоза прикомки на радиоупрвлении

Конструктор с радиоуправлением

— из такого конструткора можно собирать самодельные радиоуправляемые модели автомобилей.

Leo комментирует:

Хм, за вечер можно сделать целую эскадрилью радиоуправляемых авиамоделей!

Дмитрий комментирует:

А где можно элекронику по дешевле купить? Я из Челнов.

Говорящие с ветром комментируют:

Думаю интересно не только мне

САША комментирует:

misha комментирует:

очень интересно но лучше я куплю жигуль

Миша комментирует:

покупал как то подобное малогабаритное изделие, из-за маломощности моторчиков и всего остального уносит сквозняком в дальние дали, но при падении планирует и практически не расшибается, расшибить специально не получилось — на дальности метров 20 теряет управление и переходит на автопилот))) плавно оседая в траву. была бы эелектроника готовая помощьнее было бы интересно.

Андр комментирует:

Ходите на сайт RC-Aviation.ru там есть и подборки оборудования.
Дальность полета 600-800 метров (дальше видимости)
Много чертежей и фотоинструкций по изготовлению авиамоделей

Андр комментирует:

Ходите на сайт RC-Aviation.ru там есть и подборки оборудования.
Дальность полета 600-800 метров (дальше видимости)
Много чертежей и фотоинструкций по изготовлению авиамоделей

комментирует:

где взять пульт

altgamer комментирует:

Брать здесь -> http://www.parkflyer.ru/29314/category/191/57/ дешевле только бу

altgamer комментирует:

Брать здесь это пульт -> http://www.parkflyer.ru/29314/product/9042/

Roman46 комментирует:

Надо будет на пенсии попробовать

Мишаня фореве комментирует:

народ, пожалуйста подскажите.
у меня щас денег не много, поэто му разобрал свою електро машинку и планирую вынуть её задний двигатель и прикрепить его к самолёту. Как думаете хватит мощьности. Помогите.

Мишаня фореве комментирует:

Двигатель 3 см сантиметра в длину и 1.7 см где то в ширину. И есть проблема-у него не три провода а два. Объясните мне пожалуйста что да как

ывапрол комментирует:

Саня комментирует:

Красиавя авиамодель, как с лётными качествами? Стою перед выбором теперь либо данная модель либо эта http://rc-aviation.ru/ultron3d , видел отлично 3D летает.

Артем комментирует:

Полетные качества у такой модели вполне себе! Учтите — это не 3Д модель и летать на ней гораздо проще!

Flint комментирует:

Интересный способ. Главное — можно быстро изготовить авиамодель своими руками. Надо будет попробовать.

Алексей комментирует:

как изготовить мотораму?

роман комментирует:

Самый простой вариант — взять фанерную площадку просверлить в ней отверсия под крепеж винтами мотора, с другой стороны приклеить деревяные направляющие, которые приклеиваются к фюзеляжу авиамодели.

Авиамодель — простой тандем 250 — 3D

авиамоделизм — мир увлеченных

Последовательность настройки пилотажного радиоуправляемого
самолета 3Д для начинающих пилотов

. Для ЕРР самолетов эта методика применима только частично, вследствие слишком не стабильной геометрии самолетов из ЕРР

. Данная краткая методика основано на личном опыте автора и в большинстве случаев поможет правильно настроить самолет для выполнения классических комплексов пилотажа и 3д элементов, фристайла для начинающих пилотов

. Методика применима в основном для тренировочных пилотажных моделей размахом 1300-1800 мм класса и для 3Д моделей размахом от 1300мм и выше. Основным полетным режимом для пилотажных моделей следует считать малые расходы, для моделей 3Д максимальные расходы для комплексов 3Д и малые расходы для классических комплексов.

Расходы всех рулей выставляем в максимальное положение с экспонентами 50-70%.

Больше 70% ставить не стоит, так как с увеличением экспонент резко снижается точность управления. Наилучшим первоначальным выбором будет 50-60%.

Очень желательно иметь отклонения на рулях высоты 55-70 град, на элеронах 35-50 град, на руле направления максимум, сколько позволяет геометрия.

Малые расходы выставляем примерно 20% от максимальных на элеронах и рулях высоты, 40% на руле направления. Экспоненты для малых расходов делаем 20-25%.

Примечание: в зависимости от применяемой аппаратуры, знак экспоненты может быть разным. Для передатчиков Футаба и Хайтек знак ( — ).

На земле добиваемся рекомендуемой в мануале центровки. Как правило, она оказывается немного более передней, но для первых полетов это нормально: главное, что бы не оказалась слишком задней. Вполне допустимо добиваться нужной центровки с помощью автомобильных балансировочных грузиков на липучке (после окончательной настройки это исправим).

В обязательном порядке проверяем не только сам факт отклонения всех рулевых поверхностей, синхронность половин руля высоты (отсутствие «ножниц»), но и еще на земле тщательно проверяем, в нужную ли сторону отклоняются рули. Особенно это касается элеронов. В воздухе «реверс» будет исправить почти невозможно.

Очень рекомендую с самого начала настроить F/S на «плоский штопор»: Двигатель на ХХ или на отключение. Элероны в нейтраль. Рули высоты полностью вверх на максимальных расходах. Руль направления полностью вправо на максимальных расходах.

Итак, центровка рули предварительно настроены, экспоненты выставлены, F/S настроен, все заряжено и проверено.

Первые полеты, подбор центровки

Задачей первого полета (на самом деле это далеко не один полет и может быть даже не десять) является подбор предварительной «базовой» центровки.

После взлета и предварительного триммирования по всем осям начинается на средней (крейсерской) скорости полета самое главное. Нам требуется определить необходимую центровку, так сказать БАЗОВУЮ (так как впоследствии она может несколько изменяться под цели и задачи конкретного пилота, но уже в не значительной степени. До последующей проверки-регулировки выкоса двигателя «вверх-вниз» очень важно точно выдерживать выбранную крейсерскую скорость полета (например стик газа точно в центре). Лучше всего для этого подходит безветренная погода в вечерние время, когда турбулентности атмосферы практически нет.

Читать еще:  Быстрый и простой домик для кота

— переворачиваем самолет на спину, выставляем ровно в горизонт и отпускаем стики. Если самолет летит ровно или лезет вверх, садимся и грузим нос, центровка слишком ЗАДНЯЯ. , если самолет несколько стремится вниз, переходим к следующему тесту.

Нужно отметить, что любой подобный тест следует повторить многократно, в разные стороны, что бы иметь уверенность, что в процессе проверки не вносим своими руками поправок в управление.

Почему центровка задняя, если самолет на спине летит ровно без поддержки?

В наших моделях стабилизатор, крыло и мотор выставлены по нулям. Значит, что бы сбалансировать самолет для ровного полета в прямом горизонтальном полете, хотим мы этого или нет, но нам нужно отклонить руль высоты несколько вверх для создания угла атаки, при котором самолет летит горизонтально. То есть изначально руль высоты уже оттриммирован. А это означает, что переворачивая самолет на спину, при правильной центровке он будет стремиться несколько опускать нос. Это НОРМАЛЬНО.

Заводим самолет повыше, переворачиваем на спину, полностью убираем газ и переводим самолет в пикирование на спине под углом 45 град:

  • Если самолет стремиться выйти на шасси, центровка — ЗАДНЯЯ
  • Если самолет стремиться выйти на фонарь, центровка — ПЕРЕДНЯЯ
  • Если самолет летит точно под 45 градусов, центровка — НОРМАЛЬНАЯ
  • Последовательными тестами и регулировками добиваемся НОРМАЛЬНОЙ центровки.

Примечание, после каждой коррекции центровки перед следующим тестом модель может потребовать некоторого триммирования, не забывайте об этом.

Дополнительный тест для продвинутых пилотов 3Д: некоторую коррекцию в центровку можно внести переводя из горизонтального полета на малой скорости в вертикальное положение (на висение или силовую бочку). По интенсивности заноса хвоста можно довольно точно откорректировать центровку под себя.

Будем считать, что центровку определили, теперь можно освободить самолет от лишних грузов и перемещением оборудования добиться найденной центровки. (в случае электрических моделей надо очень точно определить положение силовой батареи, так как даже не значительное перемещение в пределах 5мм влияет на центровку).

Выкос двигателя «вверх-вниз»

Теперь необходимо проверить правильность выкоса двигателя. Для этого самолет в нормальном горизонтальном полете на половине газа переводим на полный газ. Повторяем по несколько раз в разные стороны. Если самолет начинает заметно стремиться вверх или вниз, исправляем выкос до тех пор, пока не исправим. Самолет не должен менять тангаж при изменении газа от половины до полного.

Полет на ноже, регулировка

Мы имеем оттриммированный самолет с нужной центровкой и правильным выкосом. Теперь нужно отрегулировать его для полетов на ноже, выполнения всех разновидностей бочек и вращений. Для этого нужно установить не отключаемые линейные миксы:

РН – РВ и РН — ЭЛЕРОНЫ

Сначала займемся миксом РН-РВ:

На крейсерской скорости ставим самолет на установившийся полет на ноже и поддерживая рулем направления отпускаем стик канала РВ в нейтраль. Как правило, наши самолеты будет уводить на шасси. После посадки вносим коррективы в значение микса и проверяем снова до тех пор, пока самолет на ножах не станет лететь без уводки по РВ.

Микс РН-ЭЛЕРОНЫ регулируем аналогично.

Следует отметить, что для разных ножей (кабиной на себя и брюхом на себя) числовые значения миксов будут несколько отличаться, обратите на это внимание при регулировке миксов. Нам нужно добиться, что бы самолет летел ровно в обе стороны.

Есть еще несколько полезных миксов, которые стоит применить при регулировках своей модели.

МИКС МАЛЫЙ ГАЗ – РВ:

Наверное многие обращали внимание, что на малой скорости полета и малом газе самолет склонен несколько опускать хвост. Этот недостаток порожден аэродинамической схемой наших самолетов.

— заводим самолет вертикально вверх и на ХХ начинаем вертикальное пикирование, для наглядности развернув самолет боком к себе. Если он летит ровно, все хорошо. Но так не бывает. Обычно самолет стремиться немного уходить на кабину.

Создаем хитрый линейный не отключаемый микс: когда газ находится в положении от 0 до 2% своего хода, РВ отклоняется немного вниз. От 3% газа и до 100%, РВ находится в своем нормальном положении. Этот микс будет очень полезен и на посадке, предотвращая вспухание самолета перед самой землей.

ПОСАДОЧНЫЙ РЕЖИМ ДВИГАТЕЛЯ: (Для самолетов с ДВС)

На любой удобный тумблер активируется стандартная функция оправления холостыми оборотами IDLE DOWN.

Этот режим просто необходим при использование бензиновых двигателей. Посадочный режим настраиваем на МИНИМАЛЬНЫЕ устойчивые обороты двигателя. А в полетном режиме увеличиваем обороты на 300-500 об/мин. Двигатель гарантированно не заглохнет в воздухе.

КРИВАЯ ГАЗА (ОБЯЗАТЕЛЬНА для 3Д)

Для уверенного и комфортного выполнения висений, силовых бочек, харриера и роллингов очень полезно настроить под себя, под свой стиль, под свой двигатель кривую газа таким образом, что бы в зоне висения максимально полого растянуть кривую газа.

РЕГУЛИРОВКА ВЫКОСА ДВИГАТЕЛЯ ВПРАВО-ВЛЕВО:

Вообще, эта регулировка не для новичков. И для наших целей не является обязательной. Приступать к ней стоит только с получением хорошего пилотажного опыта.

Суть регулировки сводится к выявлению влияния двигателя на уводку самолета вправо – влево. Выполняется при серии последовательных вертикалей на газу и вертикальных пикирований на ХХ (на пикировании с ХХ двигатель не влияет на траекторию полета).

Для тех, кто будет это выполнять, обратите внимание – на затяжных вертикалях в газ несмотря на все регулировки, самолет будет склонен на полном газу чуть уходить влево.

Можно использовать линейный микс ГАЗ от 98 до 100% — РН

ДИНАМИЧЕСКАЯ БАЛАНСИРОВКА

Для наших целей вполне можно обойтись и без динамической балансировки, но все же:

Если модель из вертикали при переводе в горизонт падает на одну из консолей. То можно попробовать провести динамическую балансировку, подгружая противоположную консоль.

Выполняется на вертикальном пикировании на ХХ с энергичным переводом в горизонт в любую сторону. Но при этом нужно быть АБСОЛЮТНО уверенным, что на половинках РВ нет НОЖНИЦ, что при переводе в горизонт не затрагиваются элероны или РН.

Расходы рулей, экспоненты

Теперь, когда самолет предварительно отрегулирован, можно заняться расходами и экспонентами.

Расходы рулей, экспоненты для классического пилотажа F3M

Комплекс F3M является в чистом виде классическим-пилотажным, поэтому и настраивать расходы необходимо в соответствии с канонами классического пилотажа. В сети есть очень много публикаций по настройкам от ведущих спортсменов страны. Замечу лишь, что для пилотажного комплекса необходимо использовать как основной полетный режим – режим малых расходов. В общем виде про них уже упоминалось в п.1. Остается добавить, что сначала необходимо дозагрузить самолет в сторону более передней центровки (например съемным свинцовым грузом), соответственно перестроить все миксы под переднюю центровку. В передатчике проще всего завести для этого отдельную модель. Затем придется настроить малые расходы по своему вкусу и добавить полетные режимы: штопорная бочка, срывник, штопор. Кто то устанавливает полетные режимы на тумблера, кто то делает логические миксы, можно по разному, лишь бы в полете было удобно.

Расходы рулей, экспоненты для 3Д пилотажа

Базовые настройки мы выставили еще в п.1 настоящей статьи. Теперь несколько слов о принципах подстройки:

Читать еще:  Простой способ электрохимического травления рисунков на металлах

Ррасходы РВ и РН имеет смысл так и оставить максимальными, их мало не бывает.

ЭЛЕРОНАМИ несколько иная ситуация. В зависимости от самолета, сервоприводов и просто опыта пилота расходы по элеронам (по крайней мере сначала) могут оказаться слишком большими. Когда пилот просто не справляется до конца с быстрыми вращениями. Поэтому их нужно уменьшать до тех пор, пока не станет комфортно. Возможно потом, с набором опыта, расходы будем несколько повышать. Но сейчас важно, что бы было удобно.

С экспонентами все намного сложнее. Готовых рецептов не существует. Можно лишь отметить, что хорошие результаты для корректировки экспонент получаются в роллингах. В любом случае, числовые значения экспонент не стоит уводить за 70%.

Вот в общем и все. Да простят меня пилоты F3A за столь примитивное изложение материала, но для начала полетов на 3Д самолетах этой методики вполне достаточно для регулировки моделей.

Полная инструкция: как сделать RC авиамодель для начинающих

Всем привет, авиация всегда была страстью всей моей жизни, что в итоге привело к получению научной степени в авиационном университете. Как студент технического университета я знаю, что мне всегда есть чему учиться, но у меня есть также многое, что я могу дать сам, поскольку летаю, строю и разрабатываю самолёты в течение 10 лет. В результате своего увлечения я собрал информацию и написал подробную инструкцию на тему: «Как спроектировать и построить радиоуправляемый самолёт». В ней я собрал нужную и полезную информацию, начиная от выбора модели самолета и заканчивая испытательным полётом самолёта.

Любая разработка самолёта начинается с четкой постановки цели. Она и является основной направляющей силой всех расчетов и конструкторских работ. Для строительства я выбрал поршневой истребитель второй мировой войны. Именно поэтому мои исследования начались с изучения различных конструкций самолётов, чтобы найти пример для подражания. В этот список вошли P-51 Мустанг, Мессершмитт BF-109, P-40, Спитфайр, а также другие истребители второй мировой войны. Все эти самолёты были символами своего времени и максимально подходили для тех условий, в которых эксплуатировались.

В результате долгой подготовительной работы и процесса изготовления самолёта я написал инструкцию, в которой подробно рассказал про все стороны конструирования и изготовления авиамодели. В инструкции можно найти информацию по основным шагам по строительству авиамодели, по трудностям и их преодолению. Также можно найти информацию по тому как работать с деревом, как выполнять работы по стеклопластику, и по другим аспектам искусства авиамоделизма. Надеюсь, что инструкция даст всю необходимую информацию, и будет служить путеводителем в мир авиамоделирования.

Эта детальная инструкция начинается с момента выбора модели самолёта, потом рассматривается этап расчета авиамодели, определение веса и изготовление прототипа. Далее идут этапы, связанные с изготовлением отдельных частей модели: крылья, фюзеляж, оперение, моторный отсек. Не стал выкладывать фотографии каждого шага строительства, поскольку их много. Но зато подробно описал каждый этап изготовления и рад тому, что все желающие могут найти информацию, как продвинуться в деле изготовления своей авиамодели, а для меня это уже большая награда. Если у вас возникнут какие-то вопросы по технологии авиамоделирования, то буду рад ответить на них в комментариях после статьи.

Шаг 1. Цель создания самолёта

Первый шаг в создании самолёта всегда определяется целями, для которых будет использоваться самолёт. Примеры целей самолётов могут быть следующие:

Авиамодель тренер для обучения полётам

Авиамодель для акробатики

Авиамодель для гонок

Авиамодель для парения

Моделирование реальных моделей

Дополнительно также рассматривается размер модели, бюджет, сроки.
В моём случае выбор пал на масштабную модель английского истребителя Спитфайр. После чего я нарисовал эскизы моего самолёта в произвольном масштабе со всеми его деталями.

Шаг 2. Определение основных деталей самолёта

Эскиз самолёта в боковой проекции

Эскиз самолёта в виде сверху

Я стал анализировать объём работы, и насколько детальной у меня будет модель. И вот, что у меня получилось.

Уровень механизации крыльев:

  • Закрылки – плоскости управления внутренней секцией крыла, предназначенные для увеличения подъемной силы, создаваемой крыльями для координации траектории при взлёте и посадки
  • Элероны — поверхности управления наружной секцией крыльев для контроля крена
  • Руль высоты – управляющие плоскости горизонтального стабилизатора, используемые для управления тангажом
  • Горизонтальный стабилизатор – обеспечивает продольную устойчивость самолёту
  • Крылья сборные, состоят из лонжеронов и нервюр, на конце имеют законцовки

Уровень проработки фюзеляжа:

  • Емкость и уровень разряда батареи
  • Капот мотора – покрытие моторной части самолёта сразу же за обтекателем
  • Жалюзи мотора – покрывают верхнюю часть фюзеляжа за капотом
  • Ферменные конструкции внутри фюзеляжа, которые создают поперечное сечение, как каркас на корабле
  • Руль направления – орган управления вертикальным стабилизатором для управления по курсу

Также я решил сделать:

  • Хвостовое колеса – колесо, расположенное в хвостовой части самолёта, чтобы позволить ему маневрировать по земле. Обычно у радиоуправляемых самолётов это колесо привязано к хвосту.
  • Главное шасси – посадочное шасси, созданное для удержания веса самолётов на посадке
  • Обтекатель – носовая часть самолёта, которая одевается на карданный вал двигателя и пропеллера, чтобы придать носу обтекаемую форму

Шаг 3. Технология изготовления

Для изготовления используется такой материал, как стеклопластик, кевлар, либо стекловолокно. Позволяет делать очень легкие и прочные авиационные конструкции. Основной недостаток таких конструкции – это стоимость и время, требуемое для изготовления. Кроме того, эта технология требует специализированных инструментов и производственных процедур для создания форм и отливок деталей. Кроме того, такие материалы могут вызывать радиопомехи, которые могут поставить под вопросом использование даже 2,4 МГц передатчиков.

Обработка дерева требует применение стандартного набора инструментов для создания летательного аппарата. Трудоемкость может быть снижена благодаря простоте и легкости работы с деревом. Кроме того, поскольку эта технология является широко распространенной, то и информации на её счет легкодоступна.

Самолёт из пенопласта прочный и быстрый в постройке, однако, чаще всего самолёты тяжелее обычных аналогов, поскольку пена требует дополнительных усилений для того, чтобы противостоять летным нагрузкам.

Шаг 4. Расчет размера

Размер самолёта определяется несколькими критериями. Среди этих критериев есть технология изготовления, удобство транспортировки до места полётов, лётные характеристики (радиус полёта, ветроустойчивость), а также требования к посадочной площадке (вода, трава, газон и другие).

С этого места начинается подбор подходящего размера самолёта исходя из известных размеров компонентов модели, таких как электронное оборудование. Это может быть трудно сделать, поскольку лучше всего классифицировать компоненты, а затем работать над общей концепцией самолёта. Например, вес крыла может быть приближенно определен через вес материала, который будет использоваться для изготовления лонжерона, затем прикидывается количество листов бальзы, необходимой для строительства нервюр и обшивки крыла. В дополнение к этому следует учитывать также другие части самолёта, например, переднюю кромку. Также лучше всего держать под рукой некоторые материалы для точного измерения веса.

Шаг 5. Электроника

Вот подробный список всего перечня оборудования, входящего в состав модели:

  • Передатчик — это контроллер, используемый пилотом для трансляции радиосигналов на приёмник самолёта.
  • Приёмник — это устройство, которое получает сигналы от передатчика и передаёт их на сервоприводы и другие устройства.
  • Регулятор оборотов мотора управляет потоком энергии, идущим к электрическому мотору (приводам осей).
  • Система питания приёмника и приводов уменьшает напряжение от батареи до безопасного уровня для приёмника и другого оборудования.
  • Батарея — это источник питания на самолёте, питающий энергией двигатель и другое оборудование.
  • Бортовой аккумулятор — батарея, установленная независимо от источника питания, используемого только для питания приёмника и сервоприводов. Аккумулятор повышает уровень безопасности, поскольку он работает независимо от системы питания, которая может выйти из строя.
  • Наиболее распространены на RC – моделях бесщёточные моторы. Эти моторы имеют улучшенную эффективность над коллекторными моторами, поскольку у них уменьшенное трение и увеличенное кпд.
    Старый тип моторов — это коллекторные двигатели, которые используются в основном в дешевых моделях начинающих авиамоделистов, малых размеров, таких как микро вертолёты.
  • Аналоговые сервоприводы дешевые и подходят для большинства случаев. Цифровые моторы имеют повышенную частоту кадров и могут обеспечить увеличенную скорость вращения, больший крутящий момент и точность. Однако, цена таких моторов находится в другом ценовом диапазоне, и требуется точно подбирать подходящую систему питания для установленного числа сервоприводов.
Читать еще:  Изготовление разделочной доски, которая не искривляется при намокании

Шаг 6. Определение веса

Следующий шаг в планировании проекта — это определение веса. Этот этап даст понимание о реализме модели и насколько она жизненна. Я рекомендую Вам составить таблицу, чтобы быстро перебрать возможные варианты конструкции (например, такую, как моя таблица «Расчёта веса»).

Во-первых, начните перечислять компоненты, которые входят в вес самолёта, например, сервоприводы и приемники. Потом оцените полный вес самолёта, и разложите его по частям на вес крыла, хвоста, фюзеляжа, шасси и системы питания. На данном этапе будет видно, сколько потребуется питания для модели и какой у неё будет вес. Если вес самолёта окажется избыточным, то увеличится площадь крыла, а конструкцию самолёта нужно будет пересматривать. В дополнение на этом этапе нужно будет оценить, насколько быстро модель будет набирать взлетную скорость. Для этого используйте уравнение подъемной силы, приведенное на рисунке и в таблице, и подставьте в него значения аэродинамического коэффициента максимальное для вашего профиля, либо консервативное значение равное 1,1.

Шаг 7. Расчет элементов питания

Легкая и эффективная система питания лежит в основе любого самолёта. Для авиамодели с электрическим приводом лучшее решение – это бесщеточный мотор с литий-полимерным аккумулятором. Вот некоторые советы, которые я могу дать исходя из своего опыта.

  • Для того, чтобы подобрать подходящую систему нужно знать уровень потребления мощности вашего оборудования. Подобрать систему можно в любом интернет-магазине оборудования для авиамоделистов: www.rc-airplane-world.com
  • Как только требуемая мощность определена, следующий шаг состоит в том, чтобы найти моторы, наиболее подходящие для таких условий. При поиске важно знать рабочее и предельное значение мощности. Они должны соответствовать вашим условиям.
  • Скорость бесщеточных моторов измеряется в Kv. Kv расшифровывается, как число оборотов, приходящихся на один вольт. Высокие значения Kv больше подходят для небольших моделей и туннельных вентиляторов. Моторы с низким значением Kv производят больший крутящий момент, но крутятся с меньшей частотой, чтобы их разогнать обычно используют высокое напряжение. Общий подход такой: при одинаковых мощностях на выходе мотор с высоким kv будет крутить меньший пропеллер быстрее, если увеличить напряжение, тогда как мотор с низким kv большой мотор будет крутить гораздо медленнее и с большим потреблением электричества, но на большем напряжении. Золотая середина при выборе мотора находится между оптимальным размером батареи и подходящей мощностью.
  • Я настоятельно рекомендую использовать калькулятор для того, чтобы оценить производительность мотора до его покупки. Ecalc – это простое и доступное веб приложение, содержащее большое количество моторов и пропеллеров и позволяющее оценить характеристики различных комбинаций перед покупкой. В приложении Вы также сможете быстрее оценить потребляемый Вашей конструкцией ток, а также измерить тягу: www.ecalc.ch
  • Регулятор скорости мотора должен быть выбран так, чтобы соответствовать рабочему напряжению и току мотора. В дополнение к этому, если электроника самолёта будет отключена от системы питания, встроенной в контроллер мотора, то электричества должно хватить для всех сервоприводов. Также следует предусмотреть 20% запас мощности у контроллера для гарантии безотказной работы.
  • В последнюю очередь следует выбрать батарею. Если выбрать батарею с меньшей мощностью, чем нагрузка, то она может выйти из строя в самый неподходящий момент. Литий – полимерные аккумуляторы оцениваются по количеству ячеек в батарее, например, чем больше значение «S», тем выше значения напряжения. Емкость батареи оценивается в мА-ч, а скорость разряда оценивается в С. Для того, чтобы оценить максимальное значение тока, которое можно выжать из батареи, нужно взять емкость батареи в мА-ч, разделить на 1000, а затем умножить на рейтинг С. Также помните о запасе в 25% скорости разряда, поскольку у некоторых батарей срок службы элементов завышен. И, наконец, никогда не допускайте слишком большого разряда литий — полимерных аккумуляторов, и заряжайте батарейки каждые 10 полётов.

Шаг 8. Проверка конструкции

Эскиз самолёта в боковой проекции

Эскиз самолёта в виде сверху

Эскиз самолёта в боковой проекции

Эскиз самолёта в виде сверху

Как только проектирование завершено, нужно проверить конструкцию. Для этого я сделал эскизы моей модели в масштабе 1:2. С помощью этого нового эскиза я сделал планерную версию своего самолёта из пенопластика. Изготовление прототипа началось с создания фюзеляжа в виде боковой проекции с рулем высоты. Затем в фюзеляже был вырезан паз под хвостовое оперение. Обратите внимание, что хвост установлен с отрицательным углом атаки, как и положено. Для стандартного исполнения самолёта с главным крылом впереди хвоста, это важно для устойчивости. Для того чтобы две части крыльев соединить вместе, я вклеил несколько частей провода в крыло и просунул его наполовину в противоположное крыло, а затем обвязал самолет упаковочной лентой и добавил кусок пластилина в носовую часть для баланса. Во время испытания модель показала себя хорошо, быстро выходила из сваливания и хорошо летала, поэтому я решил начать собирать полномасштабную модель.

TANDEM

Обзор ассортимента

Ассортимент TANDEM впечатляет плавным ходом и динамической нагрузкой 30 кг и 50 кг.

Полное и частичное выдвижение

Направляющие TANDEM бывают полного и частичного выдвижения. Полное выдвижение обеспечивает удобный доступ к содержимому вплоть до дальних углов.

Направляющие TANDEM с замками

Благодаря замкам TANDEM ящики устанавливаются и снимаются легко и просто. Одновременно замки выполняют функцию фиксатора, защищающего ящик от нежелательного снятия.

Классы нагрузки

Номинальная длина

30 кг

250 — 600 мм

50 кг

450 — 750 мм

30 кг

270 — 650 мм

Направляющие TANDEM с фиксаторами

Монтаж с помощью фиксаторов также производится быстро и без лишних усилий. Ящик фиксируется в специальных отверстиях и надежно крепится на направляющей.

Классы нагрузки

Номинальная длина

30 кг

260 — 560 мм

30 кг

260 — 560 мм

Технологии движения

Система амортизации BLUMOTION, адаптивная к переменным нагрузкам, обеспечивает мягкое и бесшумное закрывание мебели. При использовании фасадов без ручек направляющие TANDEM можно комбинировать с электрической системой открывания SERVO-DRIVE. Для механического открывания можно использовать систему TIP-ON.

Система внутренних разделителей ORGA-LINE

Система внутренних разделителей ORGA-LINE обеспечивает идеальный порядок в любом ящике. Любые кухонные принадлежности, будь то столовые приборы, бутылки или кастрюли, можно разместить надежно и удобно. Оформите полезное пространство с помощью внутренних разделителей ORGA-LINE, чтобы разложить все необходимое под рукой и обеспечить прекрасный обзор.

Функциональные конструкции шкафов

Функциональные конструкции шкафов помогают оптимально организовать рабочие процессы на кухне и рационально использовать имеющееся пространство.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector