21 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Простой лабораторный блок питания 1-30В

Простой регулируемый блок питания 0-30в

Всем давно известно, что без нормального регулируемого блока питания не возможно запустить ни один девайс сделанный своими руками. Ведь блок питания это основа радиолюбительской лаборатории, поэтому в этой статье я расскажу, как сделать простой регулируемый блок питания из доступных деталей всего на двух транзисторах. На этом рисунке изображена простая для изготовления схема регулируемого блока питания.

Схема регулируемого блока питания на транзисторах

Эта схема очень неприхотлива в радиодеталях по этому, собрать её может каждый начинающий радиолюбитель практически из того, что имеется под рукой. Диодный мост Br1 пойдет практически любой с силой тока не менее 3А. Если нет диодного моста, замените его подходящими диодами. Конденсатор С1 можно заменить любым от 1000 мкФ до 10 000 мкФ. Переменный резистор Р1 от 5 до 10 кОм. Транзистор Т1 КТ815, BD137, BD139 транзистор Т2 КТ805, КТ819, TIP41, MJE13009 и многие другие советские и импортные аналоги, подбираются согласно требуемой нагрузке и мощности источника питания.

Диод D1 с силой тока не менее 3А, можно вообще заменить перемычкой, он защищает конденсатор C2 от переполюсовки при подключении к блоку питания аккумулятора. Источником питания для этой схемы может служить любой трансформатор от 12 до 30 вольт. Для своего блока питания я использовал тороидальный трансформатор от музыкального центра с двумя последовательно соединенными обмотками по 13,5В и силой тока 3,5А. После выпрямления напряжения на выходе получилось 30 вольт.

Все детали блока питания я, как всегда разместил на печатной плате размером 6,5 на 4,5 см. При установке транзисторов обратите внимание на цоколевку. Например у транзистора КТ819 ножки располагаются так ECB, а у транзистора MJE13009 так BCE, по этому транзисторы лучше всего соединить с платой небольшими кусочками провода и тогда у вас не возникнет проблем с правильной установкой транзисторов на радиаторе.

Печатная плата регулируемого блока питания 0-30В

Два транзистора установите на одном радиаторе без изоляционных прокладок потому, что коллекторы транзисторов на схеме соединяются вместе. Не забудьте места крепления транзисторов смазать термопастой. Диодную сборку желательно закрепить на небольшом радиаторе, она тоже не слабо нагревается. Для контроля выходных характеристик желательно установить универсальный китайский измерительный прибор (УКИП) обозначенный на схеме V/A1.

Все компоненты блока питания я разместил в стандартном корпусе от компьютерного блока питания. Только из за большого размера тороидального трансформатора от музыкального центра вентилятор пришлось разместить снаружи, но это на технические характеристики блока питания особо не влияет.

Благодаря мощному 3,5 амперному тороидальному трансформатору этот универсальный регулируемый блок питания я использую для питания различных самоделок и в качестве зарядного устройства для небольших аккумуляторов.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том как работает регулируемый блок питания.

Лабораторный блок питания своими руками 1,3-30В 0-5А

Дата: 12.02.2016 // 0 Комментариев

Собирая лабораторный блок питания своими руками, многие сталкиваются с проблемой выбора схемы. Импульсные блоки питания при наладке самодельных передатчиков или приемников могут давать нежелательные помехи в эфир, а линейные блоки питания зачастую не в силах развивать большую мощность. Почти универсальным блоком может стать простой линейный блок питания 1,3 – 30В и током 0 – 5А, который будет работать в режиме стабилизации тока и напряжения. При желании им можно будет, как зарядить аккумулятор, так и запитать чувствительную схему.

В сети гуляет интересная схема, которая обсуждалась на множестве форумов, отзывы по ней были ну совсем неоднозначные. Ниже приводим оригинал этой схемы, и вкратце расскажем, откуда она взята. На основе ее мы сделаем лабораторный блок питания своими руками.

Читать еще:  Автономная кормушка для птицы

Это почти классика. Блок питания реализован на стабилизаторе напряжения LM317, который может регулировать напряжение в пределах 1,3 – 37В. Работая в паре с мощным транзистором КТ818, схема способна протянуть через себя уже значительный ток. Ограничитель и стабилизатор тока, так называемая защита лабораторного блока питания, организована на LM301.

Если обратиться к первоисточникам, можно увидеть, что основа схемы описывалась в разных книгах, например Г. Шрайбер «300 схем источников питания» стр. 39.

А также упоминалась в книге П. Хоровиц «Искусство схемотехники» том 1, стр. 358.

Новичкам, собирающий первый блок питания, рекомендуем ознакомиться с вышеупомянутой литературой, там есть, что для себя почерпнуть.

Как видим, основа особо не поменялась, схема обросла парой фильтрующих конденсаторов, диодными мостами и весьма странным способом включения измерительной головки. Также применяется транзистор КТ818, который значительно уступает по мощности MJ4502 или MJ2955.

Лабораторный блок питания своими руками 1,3-30В 0-5А

Немножко подумав, мы сделали свою интерпретацию данного блока питания. Повысили емкость входных конденсаторов, убрали элементы измерительной головки и добавили парочку защитных диодов. Применения в этой схеме КТ818 было абсолютно неоправданно, он безбожно грелся и безвозвратно издох, пока его не заменили парой недорогих транзисторов TIP36C, которые включили параллельно.

Настройку блока питания необходимо проводить в несколько этапов:

Первое включение производится без LM301 и транзисторов. Регулятором Р3 проверяем, как регулируется напряжение. За регулировку напряжения отвечают LM317, Р3, R4 и R6, С9.

Если регулировка напряжения производиться нормально, тогда к схеме подключаем транзисторы. Пару транзисторов покупать лучше с одной партии, с максимально близким hFE. Для нормальной работы параллельно включенных транзисторов, в цепи эмиттера должны находиться балансировочные резисторы R7 и R8. Номинал R7 и R8 необходимо подбирать, сопротивление должно быть максимально низким, но достаточным, что бы ток проходящий через Т1 был равен току проходящим через Т2. На данном этапе к выходу БП можно подключать нагрузку, но ни в коем случае не стоит устраивать КЗ – транзисторы моментально выйдут из строя, забрав с собой и LM317.

Следующим этапом станет установка LM301. Важно убедиться, что на 4-й ножке операционного усилителя присутствует -6 В. Если там +6 В, то необходимо внимательно осмотреть, как у Вас включен диодный мост BR2 и правильно ли подключен конденсатор С2. Питание LM301 (7я ножка) МОЖНО брать с выхода БП.

Вся дальнейшая настройка сводиться к подгону Р1 под максимальный рабочий ток блока питания. Как видим, настроить лабораторный блок питания своими руками будет совсем не трудно, главное не допустить ошибки при монтаже.

Используемые нами основные компоненты:

  • Трансформатор ТПП 306-127/220-50. Позволяет выжать с каждой 20 вольтовой обмотки по 2,56 А, включив их параллельно получим 5,12 А. Остальные обмотки идут на питание операционного усилителя, вентилятора и цифрового вольтамперметра;
  • Стабилизатор — LM317К;
  • Транзисторы — TIP36C;
  • Операционный усилитель — LM301AN;
  • Конденсаторы электролитические – номинал см. схему, максимальным напряжением до 50В;
  • Диоды BR2 – 1N1007;
  • Диоды BR1 — MBR20100CT;
  • Резисторы R1 – 33 Ом, 2Вт;
  • Резисторы R5, R7, R8 – 0,1 Ом, 5Вт;
  • Остальные резисторы мощностью — 0,25Вт;
  • Резисторы Р1 – многооборотный подстроечный 470 кОм;
  • Предохранитель F2 – самовосстанавливающейся предохранитель от Littelfuse на 7А/30В.

Лабораторный блок питания 30в 5а, результат

Плата управления собранная на макетке.

Плата основного диодного моста.

Транзисторы установлены на радиатор от Cooler Master CMDK8, этот боксовый куллер способен рассеивать мощность до 95 Вт.

Внутри блока расположен 80мм дополнительный вентилятор, охлаждающий диодный мост и трансформатор, а также обдувающий радиатор транзисторов с тыльной стороны.

Все это добро засунуто в добротный радиолюбительский корпус, оставшийся со времен СССР. Вот таким вышел у нас лабораторный блок питания своими руками.

Подключение цифрового вольтамперметра избавило нас от измерительных стрелочных приборов.

Демонстрация работы:

В работе с максимальным током в 5 А транзисторы остаются теплыми благодаря хорошей системе охлаждения, температура основного диодного моста также в норме, т.к. там используются мощные диоды Шоттки и вентилятор, который охлаждает этот мост и трансформатор. При полной нагрузке все таки происходит небольшой нагрев трансформатора. Вес блока составил порядка 4 кг.

Читать еще:  Как сделать простые и оригинальные часы из фанеры

Уже изготовив данный блок, пришла идея, как можно немного переделать схему и получить этот лабораторный блок питания с нуля вольт. Но это уже будет другая история…

Работы наших читателей

Ниже будем добавлять работы наших читателей, присылайте в комментах фото своих лабораторных блоков питания собранные по этой схеме, будем добавлять в статью, так станет интересней.

    Лабораторный блок питания своими руками прислал Алексей. Это его первая электронная подделка, пока не оформлен в корпус. Трансформатор: ТПП-312. Транзисторы: пара TIP36C. На выходе: ток до 7А.

Лабораторный блок питания собрал своими руками Виктор. Трансформатор: взял с бесперебойника. Транзисторы: пара TIP36C. На выходе: ток до 5А.

Корпус подошел от распределительной коробки, размер лабораторного БП 24х19х9,5 см, вес 4,5 кг. По затратам на все ушло около 900 рублей.

Лабораторный блок питания выдает напряжение 1.3… 25 вольт, максимальное честное напряжение 19,5 при нагрузке 5 ампер, это почти, то напряжение, которое выдает трансформатор до диодного моста и конденсаторов.

Самодельный лабораторный блок питания от Валерия. Трансформатор: ТПП-307: пара TIP36C. На выходе: ток до 3,6А. Из за проблем с трансформатором, выжать больше не получилось.

Еще один лабораторный блок питания от Алексея. Трансформатор: ТПП-312: Силовые транзисторы пара TIP36C. На выходе: ток до 5,5А. Из за небольшой ошибки в трассировке дорожек этот БП занял у Алексея очень много времени и сил.

Свой лабораторный блок питания, который собран по нашей схеме, прислал нам Сергей. Транзисторы: пара TIP36C. Трансформатор: перемотанный трансформатор от UPS. Отдельно хотелось отметить, что такой трансформатор без перемотки не хотел корректно работать в БП. Дополнительно Сергей модифицировал свой блок питания, а именно оснастив его системой автоматической регулировки оборотов вентилятора, снятой со старого компьютерного блока питания. Стоимость блока получилась примерно в 2700 руб.

Этот лабораторный блок питания мы получили от Александра. Во время сборки Александр не однократно сталкивался с различными проблемами, не смог подружить пару транзисторов и не сразу разобрался с питанием LM301. Но благополучно их решил и не стал опускать руки. Транзисторы: пара TIP36C. Трансформатор: ТПП 322. На выходе 30В и 5А.

Такой блок мы получили от Андрея. Выдает 19,5-20 В и 5 А. Порог установлен на 4,5 А. Хотя однако трансформатор может намного больше (32 В; 6 А). Добавлены последовательно к переменным резисторам еще по одному, номиналом 10% от базового. Транзисторы: пара TIP36C. Трансформатор: тороидальный от радиолы.

Простой лабораторный блок питания 1-30В

Предлагаемая схема простого (всего 3 транзистора) блока питания выгодно отличается от аналогичных точностью поддержания выходного напряжения — тут применена компенсационная стабилизация, надёжностью запуска, широким диапазоном регулировки и дешёвыми недефицитными деталями. Печатная плата в формате Lay — в архиве.

После правильной сборки работает сразу, только подбираем стабилитрон согласно требуемому значению максимального выходного напряжения БП.

Корпус делаем из того, что под рукой. Классический вариант — металлическая коробочка от компьютерного БП ATX. Уверен, каждый имеет их немало, так как иногда они сгорают, а купить новый проще, чем чинить.

В корпус прекрасно влазит трансформатор на 100 ватт, и плате с деталями найдётся место.

Кулер можно оставить — лишним не будет. А чтоб не шумел, просто питаем его через токоограничительный резистор, который подберёте экспериментально.

Для передней панели не поскупился и купил пластиковую коробочку — в ней очень удобно делать отверстия и прямоугольные окна для индикаторов и регуляторов.

Амперметр берём стрелочный — чтоб хорошо были видны броски тока, а вольтметр поставил цировой — так удобнее и красивее!

После сборки регулируемого блока питания проверяем его в работе — он должен давать почти полный ноль при нижнем (минимальном) положении регулятора и до 30В — при верхнем. Подключив нагрузку пол ампера — смотрим на просадку выходного напряжения. Она должна быть тоже минимальной.

В общем, при всей своей кажущейся простоте, данный блок питания наверное один из лучших по своим параметрам. При необходимости можно добавить в него узел защиты — пару лишних транзисторов. Как это делается смотрите на форуме. Схему собрал и испытал — Mars.

Читать еще:  S-Vent - простой и доступный аппарат вентиляции легких (COVID-19)

Лабораторный блок питания 0 – 30В 10А

Блок питания для лаборатории этот источник питания, разработанный на микросхеме LM723, способный выдавать выходное напряжение от 0 до 30В с максимальным током до 10 Ампер. Защита от короткого замыкания и настройка выходного тока отключения от 50 мА до 10 А. Конденсатор, используемый в фильтре на 20 000 микрофарад, автоматическое переключение входного напряжения с трансформатора.

Блок питания является неотъемлемым в радиолюбительской лаборатории, будь то для работы или для хобби. Основными характеристиками источника питания должны быть, универсальность, то есть возможность питания любого устройства, будь то цифровая схема, работающая от напряжения 3 или 5 В, автомобильный радиоприемник, усилитель, работающий на напряжении 18 ÷ 24 В и т. д.

Блок питания, который обладает такими свойствами, должен быть снабжен эффективной защитой для предотвращения выхода из строя силовых транзисторов в случае случайного короткого замыкания, порог срабатывания защиты должен быть регулируемым, чтобы имелась возможность устанавливать ток на минимум.

Лабораторный блок питания на 10А обладает действительно профессиональными характеристиками, регулирование напряжения от 0 до 30 вольт, регулировка ограничения тока до минимума 50 мА, полная защита от коротких замыканий до 10 ампер, автоматическое переключение напряжения на вторичной обмотке трансформатора.

Принципиальная схема блока питания показана на рисунке в статье, отметим, что трансформатор TF1 оборудован 3-мя совершенно независимыми вторичными обмотками, первая подает напряжение 35В и 20В при токе 10 ампер, вторая обеспечивает напряжение 8В при токе 100 мА, третья обмотка с напряжением 35В 100 мА.

Напряжение с первой обмотки подается через контакты реле RL1 на выпрямительный диодный мост D4 ÷ D11. Таблица номиналов деталей в тексте статьи.

Как видно, для каждой цепи моста два диода были включены параллельно для увеличения рассеиваемой мощности. Затем напряжение фильтруется электролитическими конденсаторами С10 и С11 в общей сложности до 20000 мкФ, следовательно, это напряжение подается на параллельные транзисторы T1 ÷ T5.

Напряжение второй обмотки выпрямляется диодом D1, фильтруется конденсатором C1 и стабилизируется интегральной микросхемой U1, выход которой подключен к отрицательной цепи. Это делается для получения отрицательного напряжения по отношению к общему проводу, которое, подаваемое на интегральную микросхему U2, позволяет производить регулировку напряжения ниже минимального уровня (2 В) практически от нуля.

Таким образом, можно достичь нулевого выходного напряжения, т.е. можно запитать цепи, которые требуют напряжения питания от 1-1,2 до 1,5 В. Напряжение третьей обмотки выпрямляется диодным мостом PT1, стабилизированным стабилитроном DZ2.

Выходное напряжение регулируется с помощью многооборотного потенциометра P1, подстроечный резистор R19, установленный последовательно с ним, определяет максимальное выходное напряжение, которое должно быть на выходе.

Ограничение тока (для определения уровня срабатывания защиты) осуществляется с помощью потенциометра P2, подстроечный резистор R20 устанавливает максимальное значение порога срабатывания. Выход U2 (вывод 10) управляет базой транзистора T6, который, в свою очередь, управляет параллельно включенных транзисторов T1 ÷ T5.

Диоды D12 ÷ D15 используются для дальнейшего выпрямления любых импульсных помех (пульсации, шум и т. д.), а дроссели J1 и J2 образуют необходимый фильтр, при питании радиочастотного оборудования. Если происходит возврат радиочастотной составляющей (по линии электропитания), это обнаруживается германиевым диодом D16 и отображается при зажигании светодиодного диода DL4.

Транзисторы T7 и T8, стабилитрон DZ3 и связанные с ними компоненты определяют порог срабатывания и управление катушкой реле RL1. При используемых значениях катушка реле включается, когда выходное напряжение превышает 13-14 В, следовательно, переключая свои контакты на высоковольтную катушку (35 В) силовой вторичной обмотки, тем самым уменьшая рассеивание транзисторов при подаче тока с низким напряжением питания. Вторичные светодиоды питания DL2 и DL3 вставлены параллельные шунтирующие транзисторы T1 ÷ T5.

Необходимо соблюдать осторожность на протяжении всей фазы сборки, чтобы избежать неприятных сюрпризов при подаче питания. Помните, что диоды, электролитические конденсаторы, стабилитроны, светодиоды имеют полярность, которую необходимо соблюдать при монтаже.

Светодиоды должны быть установлены на переднюю панель корпуса, светодиод DL1 не предназначен для внешнего монтажа. После сборки мы советуем вам еще раз проверить точное положение и полярность компонентов, а также пайку, которая должна быть идеальной. Печатная плата и расположение компонентов далее в тексте статьи.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector